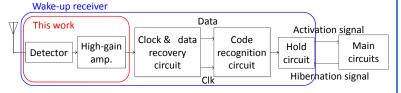
Low-power Wake-up Receiver With Subthreshold CMOS Circuits for Wireless Sensor Networks

Kazuhiro Takahagi[†], Hiromichi Matsushita^{*}, Tomoki Iida[†], Masayuki Ikebe^{*}, Yoshihito Amemiya^{*}, Eiichi Sano[†] † Research Center for Integrated Quantum Electronics, Hokkaido University, Japan * Graduate School of Information Science and Technology, Hokkaido University, Japan

Introduction

Sensor LSIs for wireless sensor networks

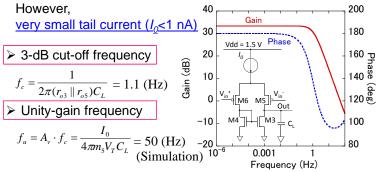

- Only limited power sources (micro-miniature batteries...etc.)
- Long-term operation
- ⇒ Reducing power consumption is required to develop wireless sensor LSIs
- Wake-up receiver introduced in sensor LSIs.

This work:

We propose low power wake-up receiver with CMOS technology operating in subthreshold current region.

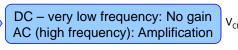
Wake-up receiver

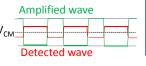
- Baseband signal: 10-100 kbps on-off keying (OOK)
- Carrier frequency: 2.4 GHz


Direct-detector

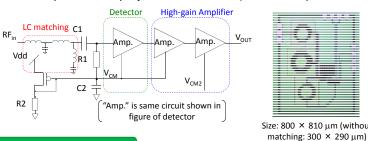
- Achieve high-frequency carrier detection in subthreshold region

Common Source Subthreshold op-amp $| | |_{I_d}$ p-MOS driver to decrease 1/f noise out Nonlinearly Characteristics of gate voltage - drain current High-speed voltage response is difficult, (Square or exponential) Drain current


Subthreshold-operational amplifier


✓ Circuit topology is same as that of ordinary op-amp.

High-gain amplifier


- Extremely high-gain amplifier (>100 dB) ⇒DC offset problem
- Introduction of subthreshold op-amp. bias circuit

Detector and high-gain amp. design

Used process: 1-poly. Si 6-metal 0.18μm CMOS process

-10

-15

-20

-25

-30 L

120

100

80

60

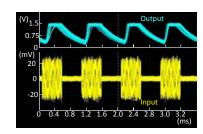
gain

LC matching circuit

Matching frequency

(designed): 2.4 GHz (fabrication): 1.75 GHz

(Caused by the wiring and pad)


✓ Measurements performed at carrier frequency of 1.75 GHz

Design gain

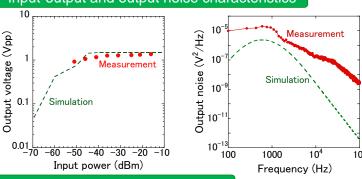
- Gain/stage: 38 dB
- 3rd stage gain: 115 dB
- Frequency band: 1 k 100 kHz

Measurement results

Oscilloscope wave form

40 20 10 100100010⁴ 10⁵ 10⁶ 10⁷ Frequency (Hz) Input power: -21 dBm

Post lavout simulation


(Electromagnetic analysis

Schematic simulation

Frequency (GHz)

Baseband frequency: 1 kHz Carrier frequency: 1.75 GHz Common mode voltage: 0.75 V

Input-output and output noise characteristics

Sensitivity and power consumption

 $3.5(\int N(f)df$ Sensitivity (Measured): -47.2 dBm Sensitivity = (Simulated): -58.0 dBm Bit-error-rate: 10-3 (assumed) Signal-to-noise: 11dB (ASK)

Power consumption (Measured): 6.8 µW

(Simulated): 7.0 µW

Future work

Reduce noise in detector to increase sensitivity