

Current controllability and stability of multi-mesa-channel AlGaN/GaN HEMTs

Tamotsu Hashizume and Kota Ohi

Research Center for Integrated Quantum Electronics (RCIQE) Hokkaido University

JST-CREST

There are many issues to be solved in GaN transistors

- 1) Surface control
- 2) Characterization and control of deep levels
- 3) IS interface and MIS (MOS) gate structures
- 4) Reliability characterization
- 5) <u>Design, fabrication and characterization of</u>

optimum device structure for GaN HEMT

Mesa-gate AIGaN/GaN HEMT with a single channel

To improve gate controllability and field uniformity in channel, the mesa-gate structures have been investigated.

Hokkaido University

good gate control

4

Potential distribution -calculation-

W_{channel} > 100 nm

 $W_{channel} < 100 \text{ nm}$

side-gate effect is weak, due to high 2DEG density

gate control is similar to a planar structure

the potential modulation from the side gate and through the undoped GaN layer becomes remarkable

surrounding gate effect

Surrounding-field effect in the mesa-gate with $W_{channel}$ less than 100 nm

Multi-channel AlGaN/GaN HEMTs

Fabrication process and SEM observation

Jpn. J. Appl. Phys. 48, 081002 (2009)

Comparison of I-V characteristics between conventional and MMC HEMTs

Gate leakage characteristics

No significant difference of gate leakage currents between two HEMTs

Hokkaido University

The leakage through the mesa region is negligible in the MMC HEMT

As W_{top} decreases, a systematic shift in threshold voltage is observed.

→ MMC structure is attractive for the control of threshold voltage.

Jpn. J. Appl. Phys. 48, 081002 (2009)

V_{TH} control in MMC HEMT

\blacksquare W_{top} dependence of V_{TH}

Excellent agreement between the experimental and calculated V_{TH} values

Surrounding-field effect is remarkable when W_{top} of the mesa channel less than 100 nm

Increase of g_m in MMC HEMT

Breakdown characteristics of planar and MMC HEMTs

Both devices showed similar breakdown behavior under off-state operation

No significant degradation in the breakdown characteristics of MMC HEMT.

14

11

Current stability of MMC HEMT-thermal effect-

I_{DS}-V_{DS} characteristics

- planar ~ the saturation drain current gradually decreased with increasing drain voltage.
- MMC ~ constant saturation drain current Jpn. J. Appl. Phys. 48, 081002 (2009)

planar HEMT

thermal effect in the channel → decrease of drain current

MMC HEMT

Effective radiation of heat

from both mesa sides of each channel is remarkable.

→ Good current stability

Current decrease after off-state stress in planar HEMT

AIGaN G D RDac D GaN 2DEG

during the stress electrons are injected to the surface states

negatively charged states reduce the 2DEG density

increase of drain access resistance R_{Daccess}

Current stability of MMC HEMT against off-stress

17

R_{ON} is strongly dependent on L_{GD} (drain access resistance)

High-impedance channel brought weak dependency

Summary

To improve current controllability, MMCs with channel widths less than 100 nm were fabricated in an AlGaN/GaN HEMT, by forming a periodic trench structure under a gate electrode.

- Control of threshold voltage
- High current drivability
- Good subthreshold characteristics
- Good current stability

Unique and promising characteristics for inverter application

surrounding field effect and high-impedance channel

Very recently, similar device structures were applied to AlGaN/GaN HEMTs [EDL, 33, 360(2012), EDL, 33, 354(2012)].